
1



2



3



Thehuman-centricapproach to	machine	learning	explicitly	acknowledges	the	
humanwork involved	in	building	and	deploying	machine	learning	systems.	A	central	
role	forhumans is	to	specify	the	desired	behaviour	of	the	system	through	the	
provision	oftraining data	with	labels.	When	viewed	through	the	lens	of	traditional	
statisticalphilosophy,	these	labels	are	intended	to	capture	an	objective	mathematical	
property	ofthe data.	However,	when	faced	with	the	irregular,	noisy,	and	subjective	
applicationdomains of	human-centric	systems,	this	assumption	unfortunately	
produces	numerouschallenges which	can	result	in	both	a	poor	user	experience	as	
well	as	poorer	resultantmodels.

These	challenges	can	be	effectively	addressed	by	addressing	theinteraction design	of	
the	end-user	activity	of	labelling.This is	because	not	only	islabelling the	primary	
mechanism	for	non-expert	interaction	with	machine	learning,but also	because	it	is	
where	the	end-user	most	clearly	encounters	the	tension	betweenthe statistical	ideals	
of	supervised	learning	and	human-centricity.
Interactive	machine	learning	(IML)	systems	enable	users	to	train,	customise,	andapply
machine	learning	models	in	a	variety	of	domains.	The	end-users	of	these	systemsare
typically	non-experts	with	no	knowledge	of	machine	learning	or	programming.	
Incontrast,	the	professional	practice	of	machine	learning,	engineering	or	‘data	
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science’typically requires	expertise	in	both	those	areas.	The	key	design	strategy	for	
reducingthe expertise	requirements	of	applied	IML	systems	is	to	abstract	away	
usingautomation nearly	all	technical	aspects	of	training	and	applying	
models,excepttheprovision of	training	data.
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In	theCrayonsapplication (Fails&Olsen,	2003),	userscan train	a	model	to	segment	
images	into	different	parts.	Crayons	enables	end-usersto build	image	segmentation	
classifiers,	that	is,	pixel-level	binary	classifiers	whichsegment portions	of	an	image	as	
falling	into	one	of	two	classes.	For	example,	a	‘humandetector’	classifier	would	take	a	
2D	image	of	sizew×has input,	and	as	output,	producew·hbinary labels,	one	for	each	
pixel,	corresponding	to	whether	or	not	the	pixel	is	partof a	human	in	the	image.	To	
build	such	a	classifier	in	Crayons,	users	paint	labels	onan image	as	they	would	using	a	
brush	tool	in	a	graphics	application	such	as	MicrosoftPaint or	Adobe	Photoshop,	
being	able	to	toggle	between	two	‘brushes’	for	the	twoclasses.	As	the	user	paints,	a	
model	is	trained,	and	the	output	of	the	model	is	renderedonto the	same	image,	
through	a	translucent	overlay.	This	allows	the	user	to	focus	further	annotation	on	
misclassified	areas.
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Another	example	of	an	end-user	controlled	IML	system	is	EluciDebug
(Kulesza,Burnett,	Wong,&Stumpf,	2015).	EluciDebug allows	end-users	to	build	multi-
class	classifiers	for	organising	short	to	medium-length	pieces	of	text,	such	as	email.	
The	userperforms manual	annotation	by	moving	emails	to	folders,	where	each	folder	
representsa class.	As	the	user	organises	their	email,	a	model	is	trained,	and	the	
output	of	themodel is	presented	as	suggestions	for	classification	within	the	email	
client	itself,	whichthe user	may	accept	or	overrule.	The	key	thing	to	note	is	that	both	
systems	involve	atraining loop,	where	the	user	provides	annotations	either	in	the	
form	of	trainingexamples or	potentially	by	manually	adjusting	model	parameters	(as	
can	be	done	inEluciDebug).	Next,	a	model	is	trained	and	the	model	output	is	
somehow	presented	backto the	user	for	further	action	in	such	a	way	as	to	directly	
suggest	which	furtherannotation or	adjustment	actions	would	be	useful.
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These	examples	of	interacting	with	a	system	in	order	to	control	its	future	

behaviourcan be	considered	either	as	programing,	or	as	model	construction.	The	

programmingperspective suggests	that	the	user	wants	the	system	to	behave	in	a	

certain	way,	and	istraining it	to	do	so.	The	model	construction	perspective	suggests	

that	the	system	istrying to	discover	what	the	user	wants,	and	is	building	a	model	of	

the	user’s	intentionsbased on	observations	of	the	user’s	behaviour.	These	two	

perspectives	carry	verydifferent philosophical	assumptions.

The	practice	of	fitting	models	to	data	has	its	roots	in	the	statistical	philosophy	

thatthere exists	some	natural	law	underlying	observed	data	(Breiman,	2001).	Due	

toimperfections in	the	data	collection	process,	the	observed	data	is	subject	to	noise.	

Theobjective of	data	modelling,	then,	is	to	uncover	the	parameters	of	the	underlying	

law.This philosophy	has	influenced	the	design	of	supervised	learning	algorithms,	and	

inturn,	the	assumptions	of	supervised	learning	have,	by	default,	driven	the	design	

ofIML systems.	This	design	influence	may	be	termed	‘techno-pragmatism’,	where	

theinteraction is	designed	around	satisfying	the	technical	needs	of	statistical	models.	

Thepurpose of	the	user,	within	the	overall	system	design,	is	to	satisfy	the	requirement	

foran ‘objective’	function,	encoding	the	underlying	‘law’,	in	which	the	labels	provided	

bythe user	define	the	‘ground	truth’	of	that	law.	The	techno-pragmatist	statistical	
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viewof IML	is	therefore	fundamentally	concerned	with	notions	of	truth,	law	and	
objectivity.
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In	contrast	to	the	techno-pragmatist	view,	in	which	the	user	is	regarded	as	a	source	
ofobjective ground	truth	for	a	statistical	inference	algorithm,	we	argue	that	the	functionof an	
intelligent	machine	learning	system	is	to	be	subjective,	or	more	precisely,	toreplay versions	of	
subjective	behaviour	that	has	previously	been	captured	fromhumans.	This	type	of	
“intelligence”	can	be	distinguished	from	mere	objectiveautomation,	of	the	kind	exhibited	by	
a	heating	thermostat	or	adaptive	suspension,where behaviour	is	determined	by	direct	
measurement	and	physical	laws.	Thoseobjective systems	do	not	require	labelling	(or	at	least,	
the	labels	are	implicit	in	thedesign of	the	sensing	channels).	Examples	of	subjective	
judgements	include	givingnames to	things,	composing	texts,	making	valuations,	or	expressing	
desires	– all related	to	human	needs	and	interpretations.	None	would	be	meaningful	in	the	
absenceof any	human	to	interpret	the	result,	meaning	that	they	are	inherently	subjective.
A	machine	learning	system	is	therefore	expected	to	emulate	subjective	humanjudgments,	
and	it	does	this	by	replicating	judgments	that	humans	have	been	seen	tomake.	Here	are	
some	extreme	examples:	machine	translation	systems	are	trainedusing texts	that	have	been	
written	by	humans;	music	harmonisation	systems	aretrained using	music	that	has	been	
written	by	humans;	and	artistic	style	generatorsare trained	using	pictures	painted	by	
humans.	In	a	sense,	these	“intelligent”algorithms offer	a	kind	of	institutionalised	plagiarism,	
in	which	the	statisticalalgorithm simply	mashes	up	and	disguises	the	original	works	until	it	is	
impossible	tosort out	who	the	rightful	authors	were.
These	kinds	of	creative	“intelligence”	offer	an	extreme	case	of	machine	behaviour	thatis
derived	from	subjective	human	decisions,	but	almost	all	supervised	learning	
systemsdemonstrate similar	dependencies.	Data	is	acquired	by	observing	humans	
(whetherresearchers,	volunteers,	anonymous	Mechanical	Turkers or	Google	searchers)	
makingdecisions and	expressing	themselves.	The	actions	of	those	humans	are	then	
replayedby the	system	as	appropriate,	based	on	statistical	likelihood	that	a	human	would	
dothe same	thing	in	that	situation.
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This	human-centred	perspective	on	machine	learning	systems	focuses	on	the	ways	
inwhich system	behaviour	depends	on	human	actions	rather	than	following	
physicallaws.	When	a	machine	appears	to	behaviour	autonomously,	we	ask	whether	
thisbehaviour has	been	derived	by	observing	humans.	The	observation	may	either	
becovert,	in	which	case	the	intelligence	of	the	system	has	been	achieved	by	
appropriatingthe subjectively	authored	intentions	of	others,	or	else	it	is	done	with	
their	awarenessand permission.	In	the	overt	case	those	users	become	programmers,	
determiningfuture system	behaviour	by	authoring	examples	of	what	that	behaviour	
should	looklike.
Labelling	is	thus	a	kind	of	programming,	albeit	one	that	is	often	highly	collaborative.A
label	is	an	instruction	to	the	system,	instructing	it	by	example	to	behave	in	a	
certainway in	a	certain	kind	of	situation.	The	system	users	who	provide	category	
labels	forsupervised learning	systems	are	engaging	in	(minor)	intentional	creative	
acts.	Ofcourse,	these	intentional	acts	are	statistically	encoded	and	aggregated	in	ways	
thatmake it	difficult	or	impossible	to	acknowledge	who	the	original	author	was	– but	
theoriginal authors	are	undeniably	humans.
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As	discussed	in	the	previous	section,	the	purpose	of	the	statistical	model	in	an	
IMLsystem is	not	to	capture	a	natural	law.	Rather,	an	IML	system	aims	to	
reproducehuman judgment	ability.	In	order	to	analyse	the	implications,	we	categorise	
humanjudgments into	four	(non-exhaustive)	types.

perceptual	judgements,
judgements	that	reflect	domain	expertise,
judgement	of	patterns	in	human	experience,	and
judgement	of	patterns	in	individual	intent.
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Perceptual	judgments	are	those	that	rely	principally	on	the	human	perceptual	
systemfor assignment	of	a	stimulus	to	a	perceptual	category.	An	example	is	labelling	
digits	inthe MNIST	database	(LeCun Yann,	Cortes	Corinna,&Burges Christopher,	
1998).These	are	often	presented	as	‘objective’	judgments,	although	the	assumption	
ofobjectivity is	only	possible	because	the	training	examples	themselves	have	
beenselected to	reflect	a	consensus	judgment	that	the	labeller	is	assumed	to	share.	
TheMNIST database	does	not	include	invalid	‘digits’,	non-digits,	ambiguous	shapes,	
orartistic subversions	of	the	concept	of	a	digit.	Are	labels	representative	of	objective	
‘facts’about the	neuroscience	of	human	vision,	or	the	subjective	assumptions	shared	
by	thelabellers and	data	set	designers?
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Domain	expertisejudgments rely	on	labellers’	recognised	expertise	in	a	particular	
area.	Two	example	are	multiple	sclerosis	assessment	through	the	analysis	of	patient	
videos(Sarkar	et	al.,	2016),	and	assigning	qualitative	codes	to	social	science	research	
data	(Chen,	2016).	Despite	these	judgments	being	provided	by	experts,	the	concepts	
beinglabelled may	have	unclear	definitions,	impairing	label	quality.	Moreover,	
manysources may	contribute	to	inter-rater	variability,	such	as	variations	in	
previousexperience,	training,	methods	and	heuristics	used	for	labelling.	Finally,	for	
domainexpertise judgments,	access	to	experts	is	clearly	a	prerequisite,	which	may	
poselogistical challenges	if	such	expertise	is	rare.
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Human	experience	judgments	are	those	that	aim	to	capture	some	universal	aspect	
ofthe human	experience.	This	might	be	regarded	as	a	special	case	of	the	domain	
expertise	judgment	where	the	domain	is	being	human,	as	opposed	to	say,	a	dog	or	a	
monkey.	An	example	is	capturing	labels	for	affect	recognition	(Picard,	1997).	Here,	
there	is	atenuous assumption	that	any	given	person	is	acting	as	a	representative	
judge	on	behalfof all	humanity,	in	relation	to	universal	human	experience.	In	practice,	
people	differ.Typical approaches	to	mitigate	this	variation	include	crowdsourcing	and	
averagingacross labellers.	Nonetheless,	affect	labelling	is	subject	to	variations	across	
age,	gender,culture,	and	other	factors	which	are	yet	to	be	modelled.	While	such	
variation	isrecognised as	a	primary	challenge	for	affective	computing	(Picard,	2003),	it	
is	notexplicitly modelled	or	acknowledged	in	the	labelling	interface	(for	example,	by	
askingthe labeller	to	assess	the	extent	of	their	own	individuality).
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Individual	intent	judgments	reflect	personal	feelings,	desires,	and	attributes.	

Unlikethe previous	three	categories,	which	appeal	to	different	standards	of	

objectivity(perceptual	reality,	objective	expertise,	and	universality)	these	judgements	

areacknowledged to	be	inherently	subjective	because	they	model	an	individual.	

Forexample,	applications	built	with	the	EmotionSense platform	(Lathia et	al.,	2013)	

aim	to	use	emotional	inference	from	mobile	phone	sensors	to	induce	behavioural	

change,	as	a	sort	of	personal	therapist.	However,	the	system	relies	at	least	partially	on	

self-reporting	affective	states,	which	suffers	from	two	issues:	users	may	not	be	

motivatedto provide	this	information	repeatedly	and	consistently,	and	more	

importantly,	theymay not	be	capable	of	consistently	self-reporting	their	emotional	

state	(Afzal&Robinson,	2014).	Recommender	systems	such	as	Amazon’s	product	

recommendationscircumvent this	issue	by	measuring	judgments	from	concrete	

actions	supposedlyreflecting revealed	intent	rather	than	expressed	intent:	products	

which	were	viewedor not	viewed,	bought	or	not	bought.	Such	actions	are	

unambiguous	signals	of	intent(because	the	user	interface	paradigm	enforces	this),	

but	are	still	not	immune	tomisdirection,	for	example	when	a	user	clicks	on	multiple	

irrelevant	links	in	order	todisguise their	search	history.
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Even	before	it	has	been	labelled,	training	data	reflects	human	judgements	andpriorities.	Modern	
supervised	learning	techniques	require	large	training	sets	to	buildstable models,	but	the	scale	of	data	
acquisition	can	raise	ethical	challenges,	includingconsent to	use	data	for	new	purposes,	protected	
categories	of	data	such	as	clinicalpatient data,	and	privacy	and	anonymity	concerns	which	make	it	
difficult	to	aggregatedata.
Moreover,	some	applications	require	fast	convergence.	For	instance,	the	TrueSkillsystem (Herbrich,	
Minka,&Graepel,	2006)	was	developed	for	matching	players	inonline games.	A	gross	mismatch	in	skill	
results	in	a	less	enjoyable	experience	for	allplayers:	the	weaker	player	outclassed,	and	the	stronger	
player	unchallenged.	A	fastestimate of	the	player’s	skill,	requiring	only	a	few	games,	is	also	desirable,	
as	repeatedmismatches may	cause	players	to	stop	playing	the	game.	Another	example	of	atechnical
approach	dealing	with	fast	convergence	is	one-shot	learning	(Fei-Fei,	Fergus,&Perona,	2006).
Data	itself	carries	epistemological	assumptions	that	have	been	embedded	in	the	wayit was	collected.	
From	the	machine	learning	perspective,	there	may	not	be	a	formaldistinction betweenexampleswhich
cannot	be	placed	exactly	in	the	space	of	labels,	andlabelboundarieswhich are	not	precise.	However,	
they	are	very	different	from	theperspective of	a	human	labeller.	Imprecise	label	boundaries	may	
undermine	labellerconfidence throughout	the	entire	labelling	activity.	Training	examples	may	also	
poseproblems because	they	are	outliers,	or	simply	unrateable.	As	noted	by	Chen	(Chen,2016),	outliers	
are	typically	discarded	in	quantitative	analyses,	but	become	the	focusof attention	in	qualitative	
analyses.	Examples	that	are	unratable (perhaps	because	ofdata corruption	or	because	they	contain	no	
meaningful	information)	may	impair	thelabelling process	if	the	labelling	tool	has	no	provision	to	mark	
examples	as	unrateable,or the	labeller	is	not	equipped	to	identify	such	a	situation	should	it	arise.
In	some	cases,	a	regression	problem	is	incorrectly	framed	as	a	classification	problemfor the	purpose	of	
labelling	– it	is	easier	to	ask	labellers	to	provide	one	of	a	discrete	setof labels	than	a	real	number	on	a	
continuous	scale.	However,	this	can	result	in	theunnecessary conceptualisation	of	examples	as	
belonging	to	a	set	of	discrete	categories,which causes	issues	for	examples	on	the	boundaries	of	
different	categories.	This	is	theproblem faced	by	the	Assess	MS	problem,	detailed	in	the	next	section.	
Unclear	conceptscause problems	generally	in	precision,	but	less	so	for	accuracy.
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Humans	are	fallible.	If	there	are	large	amounts	of	data	to	be	labelled,	the	quality	
ofjudgements can	be	impaired	as	the	labeller	becomes	tired.	In	the	Assess	MS	
projectdescribed in	the	next	section,	neurologists	would	spend	an	entire	workday,	
sometimestwo,	continuously	labelling	short	video	clips	(Sarkar	et	al.,	2016).	
Appropriate	tools,such as	the	setwise comparison	tool	developed	for	Assess	MS,	can	
mitigate	this	problem.Explicit strategies	to	maintain	interest	and	prevent	boredom	
have	been	applied	inexperiments such	as	the	Galaxy	Zoo	(Lintott et	al.,	2008)	which	
show	compellingevidence for	the	benefit	of	ludic	and	engaging	labelling	tools.
Even	in	optimum	conditions,	people	still	make	mistakes,	misinterpret	instructions	
ordisagree with	each	other.	This	is	well	understood	in	scientific	studies	where	data	
mustbe categorised	by	an	observer,	such	as	coding	of	free-text	questionnaire	
responses.Where one	researcher	might	interpret	an	observed	response	in	one	way,	
another	seesit differently.	This	difference	might	come	from	not	stating	or	
communicating	criteriathat have	been	applied	by	one	rater,	or	from	terminological	
imprecision,	for	example,stemming from	a	different	understanding	of	the	criteria	that	
two	raters might	have,or simply	their	wishful	thinking	in	relation	to	a	hypothesis.
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In	response	to	this	problem,	qualitative	social	science	researchers	monitor	
thereliability of	classification	judgments.	They	want	to	know	whether	a	judge	
consistentlymakes the	same	judgment	in	equivalent	cases,	and	also	whether	two	
judges	make	thesame decision	as	each	other.	The	second	is	more	often	discussed,	
because	it	happensso consistently.	It	is	described	as	inter-rater	reliability	(IRR),	and	is	
often	summarisedby a	statistical	measure	such	as	Cohen’s	kappa	(for	the	case	of	two	
raters),	whichcompares the	level	of	agreement	to	what	might	be	expected	from	
chance.	IRR	testingis intuitively	appealing	to	computer	scientists	such	as	HCI	
researchers,	because	thefirst rating	can	be	considered	as	a	design	decision,	and	the	
second	rating	as	a	test	ofthat decision.	Inter-rater	reliability	is	never	100%,	but	
pragmatic	allowance	for	thelimits of	human	performance	means	that	certain	
thresholds	are	considered	acceptablewithin the	range	of	observation	error.

The	question	of	whether	a	single	person	agrees	with	themselves	(when	repeating	
thesame judgment)	is	less	often	asked	in	computer	science,	but	of	more	concern	
inmedicine,	where	it	is	quite	likely	that	a	clinician	might	assess	the	same	patient	
morethan once,	with	a	considerable	interval	between	the	assessments.	Clinical	
researchsuggests that	this	test-retest	reliability	is	also	imperfect,	with	clinicians	
applyingdifferent criteria	at	different	times,	perhaps	because	of	explicit	training	and	
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correction,or perhaps	because	of	changing	tacit	or	contextual	factors	that	the	
clinician	may	notbe consciously	aware	of.	We	discuss	this	issue	further	next.
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While	labeling data	is	a	seemingly	simple	task,	it	is	actuallyfraught with	problems	(e.g.,	[9,	19,	
26]).	Labels	reflect	alabeler’s mapping	between	the	data	and	their	underlyingconcept(i.e.,	
their	abstract	notion	of	the	target	class).	Thus,label quality	is	affected	by	factors	such	as	the	
labeler’sexpertise or	familiarity	with	the	concept	or	data,	theirjudgment ability	and	
attentiveness	during	labeling,	and	theambiguity and	changing	distribution	of	the	data	itself.
This	paper	addresses	a	distinct	problem	in	labeling data	thatwe refer	to	asconcept evolution.	
Concept	evolution	refers	tothe labeler’s process	of	defining	and	refining	a	concept	intheir
minds,	and	can	result	in	different	labels	being	appliedto similar	items	due	to	changes	in	the	
labeler’s notion	of	theunderlying concept.	In	a	formative	study	presented	later	inthis paper,	
we	found	that	people	labeling a	set	of	web	pagestwice with	a	four-week	gap	between	
labeling sessions	were,on average,	only	81%	consistent	with	their	initial	labels.	
Thisinconsistency in	labeling similar	items	can	be	harmful	tomachine learning,	which	is	
fundamentally	based	on	the	ideathat similar	inputs	should	have	similar	outputs

An	even	more	insidious	problem	in	data	labeling isconceptdrift,	where	the	underlying	data	is	
fundamentally	changingover time	[29].	An	example	of	concept	drift	is	a	newsrecommender
that	attempts	to	recommend	the	mostinteresting recent	news.	Here,	the	concept	
ofinterestingmayremain the	same	over	time,	but	the	data	(in	this	case	thenews)	is	constantly	
drifting	as	a	result	of	changing	currentevents.	Most	solutions	to	concept	drift	model	
conceptstemporally,	such	as	by	discarding	or	weighting	informationaccording to	a	moving	
window	over	the	data	(e.g.,	[27,	33)or	by	automatically	identifying	new	types	of	data	(e.g.,	
[5,15]).	Critically,	none	of	these	solutions	are	intended	to	helpauserrefine their	own	idea	of	a	
concept,	a	problem	whichmay be	exacerbated	in	the	presence	of	concept	drift.
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we	introduce	structured	labelling	(Figure	1),	a	novel	interaction	techniquefor helping	
people	define	and	refine	their	concepts	as	they	label	data.	Structured	labeling allows	
people	to	organize	theirconcept definition	by	grouping	and	tagging	data	(as	much	or	
as	little	as	they	choose)	within	a	traditional	labelling	scheme	(e.g.,	labeling into	
mutually	exclusive	categories	such	as‘yes’,	‘no’,	and	‘could	be’).	This	organization	
capability	helps	to	increase	label	consistency	by	helping	people	explicitly	surface	and	
recall	labeling decisions.	Further,	because	the	structure	is	malleable	(users	can	create,	
delete,split,	and	merge	groups),	it	is	well-suited	for	situations	where	users	are	likely	
to	frequently	refine	their	concept	definition	as	they	observe	new	data.

Kulesza’s structured labeling approach allows people to group data in whatever 
way makes sense to them. By seeing theresulting structure, people can gain a 
deeper understanding of the concept they are modeling. Here, the user sees an 
uncategorizedpage (top left) and can drag it to an existing group (right), or create 
a new group for it. The thumbnails (bottom left) show similarpages in the dataset 
to help the user gauge whether creating a new group is warranted.
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Our	assisted	structuring	tool	provides	users	with	automatic	summaries	of	each	
group’s	contents	(below	the	user-supplied	tag	area)	and	recommends	a	group	for	
thecurrent item	via	an	animation	and	yellow	star	indicator.	The	black	squares	
indicate	how	many	items	are	in	each	group.
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We	reframed	the	problem	so	that	users	were	not	providing	labels	directly,	
butproviding information	from	which	labels	could	be	reconstructed.	In	this	way,	we	
couldbuild upon	strong	human	capability	in	relative	judgement	and	still	provide	
theclassification labels	required	by	the	Assess	MS	system.	This	overcame	noisy	
labels,improving the	accuracy	of	the	algorithm	by	10%.

A	key	insight	was	to	by	enabling	setwise rather	than	pairwise	comparison,	
achievingthree benefits	for	the	users.	First,	the	presentation	of	videos	in	sets	builds	
upon	humanshort-term	memory	to	make	multiple	comparisons	at	once.	Second,	the	
ability	to	createstacks to	indicate	that	videos	are	the	same	can	substantially	reduce	
the	number	ofcomparisons the	labeller	needs	to	make	when	sorting.	Third,	SorTable
facilitatesmixed-strategy	sorting,	including	the	automatic	display	of	the	left	and	
rightneighbours of	the	currently	selected	video,	and	the	ability	to	compare	any	two	
videoswith a	two-finger	gesture.	All	interactions	are	touch	based.

We	found	that	choosing	videos	to	label	to	maximise	TrueSkill’s	information	gain	
andultimately decrease	the	number	of	required	labels	was	not	a	good	strategy	for	
humanlabellers.	It	is	less	cognitively	taxing	for	people	to	differentiate	between	very	
differentvideos rather	than	similar	ones.	Put	differently,	labels	that	satisfy	a	
classifier’sinformation needs	perfectly	may	also	be	the	hardest	for	humans	to	give	
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(Lang&Baum,1992),	and	increase	stress	and	fatigue.

38


